Laboratorium zaawansowanej elektroniki i automatyki 101
Doświadczenia ze świata prowadzą do wniosku że właścicielem infrastruktury powinno być państwo. Ale jej budową winny się zajmować prywatne firmy.
Nierządy pasożytniczej III RP niczego nie potrafią zbudować. Ciągle są nowe smutne dowody na to. Za 450 mln kupiono linie produkcyjną do produkcji prochu i ... nie ma prochu a za progiem trwa wojna. Ale w zbrojeniówce wesoło na koszt podatnika od lat "prezesują" sobie synowie i córki polityków. Tudzież ich znajomi i kochanki.
Polska 20 lat budowała korwetę ORP "Ślązak" a wyszedł praktycznie nieuzbrojony patrolowiec. Malezja na tej samej dobrej niemieckiej licencji dość szybko zbudowała 6 korwet. W PGZ był wtedy m.in. syn słynnego z oszustw z kilometrówkami europosła Czarneckiego. Leżał raz na przystanku autobusowym w stanie głębokiego upojenia alkoholowego. Znany był też z użycia noża wobec gacha małżonki.
Zadłużony PRL realnego socjalizmu z państwowymi inwestycjami w końcu zbankrutował. Gdy rozpoczął się kryzys zadłużenia zagranicznego porzucono rozpoczęte inwestycje. Składy drogo kupionych za dewizy maszyn i urządzeń rozkradano i gniły pod chmurką.
W PRL ówcześni mędrcy kupili we Francji linie produkcyjną sera Camembert. Z braku hali maszyny i urządzenia leżały na otwartym powietrzu tracąc gwarancje. Gdy postawiono hale okazało się że część wyposażenia skradziono. Kiedy w końcu był zakład to partyjni mędrcy nie potrafili uruchomić produkcji i stwierdzili że mleko polskich krew nie nadaje się do produkcji tego sera mimo iż przed wojną takie sery w tamtym regionie produkowano.
Problemy edukacji nasiliła „reforma” ministra Handkego ( "popisać, poczytać , porachować" ) i kolejne deformy. Od 8 lat rządy PiS "naprawiają" edukacje. Studenci najbardziej prestiżowej Politechniki Warszawskiej nie potrafią rozwiązać typowych zadań z dawnego, komunistycznego podręcznika dla szkół średnich. Dajmy więc neosanacji 8 kolejnych lat na „naprawę”. Wincyj karty nauczyciela, przywilei, religii i pedofilii !
Ojciec Rydzyk wini dyrektorów szkół za niską frekwencję na lekcjach religii. Mają inaczej układać plan bo obecny zachęca uczniów do wypisywania się z religii. Niedługo pierwszy szaman RP chytry pan Rydzyk będzie układał nie tylko plany lekcji ale i projekty budżetu państwa z Radiem Maryja i kościołem kat jako pierwszymi beneficjentami.
Za publikację w "Studiach z Prawa Wyznaniowego" tyle punktów, co za publikację w "Nature". Ministerstwo nauki "bez żadnego trybu" dosypało punktów czasopismom głównie teologicznym, ale nie tylko. Naukowcy załamują ręce. Być może każde czasopismo naukowe w Polsce powinno zaopatrzyć się w przymiotnik "teologiczny"? Mielibyśmy jakiś "Przegląd Metalurgiczno-Teologiczny", "Rocznik Archeologiczno-Teologiczny", "Teksty Teologiczne i Drugie", "Miscellanea Mathematica et Teologica", "Zeszyty Teologiczno-Gleboznawcze"? – zastanawiał się na Facebooku prof. Wojciech Śmieja, literaturoznawca z Uniwersytetu Śląskiego.W lutym 2021 minister Czarnek wprowadził radykalne zmiany na liście, m.in. podnosząc punktację tym pismom, w których sam publikował. Protestowali naukowcy i uczelnie, np. list protestacyjny wystosował Komitet Nauk Prawnych PAN. „Bardzo się cieszę, że na nowym, dziś opublikowanym, Wykazie czasopism naukowych »Rocznik Teologii Katolickiej» oraz »Studia z Prawa Wyznaniowego« mają już 200 pkt. Inne kraje opanują świat sztuczną inteligencją, a my wodą święconą i XVI-wiecznymi freskami w Licheniu” – napisał na Twitterze prof. Emanuel Kulczycki, członek Komisji Ewaluacji Nauki.
Ponieważ narastają obawy o sfałszowanie wyborów „Europarlament wzywa Biuro Instytucji Demokratycznych i Praw Człowieka OBWE, aby zorganizowało pełną misję obserwacyjną na zbliżające się wybory parlamentarne w Polsce”
Chińskie firmy przez 3 miesiące do czerwca 2023 wybudowały w świecie i u siebie 600 tysięcy stacji bazowych 5G. W USA w latach 2019-2021 wybudowano ich 100 tysięcy.
Po 20 latach wielkich inwestycji w 2022 roku energia słoneczna w skali globu dała 2,06 % całości produkcji energii elektrycznej a wiatraki 3,27 %. Niewiele ! Duży udział mają w tym Chiny.
Subsydia w świecie do paliw kopalnych są ogromne. One zaniżają ceny "brudnej" energii elektrycznej.
Według Międzynarodowej Agencji Energii, bezpieczeństwo energetyczne to nieprzerwana fizyczna dostępność dostaw względnie mało szkodliwych dla środowiska i po przystępnej cenie. Wydobywany głębinowo polski węgiel kamienny jest bardzo drogi. Jego wydobycie i spalanie powoduje makabryczne zatrucie środowiska i ludzi. Do 1990 roku informacje o wysokiej mineralizacji wody kopalnianej metalami ciężkimi, pierwiastkami promieniotwórczymi i dziesiątkami tysięcy ton chlorków wprowadzanych do rzek poddane były ścisłej cenzurze. "Cechą charakterystyczną polskich kopalń jest dopływ silnie zmineralizowanych wód o zawartości soli przewyższającej 200 kg/m3 i dużych stężeniach izotopów radu sięgających nawet 400 kBq/m3. Mineralizacja uranem powstała wskutek wyługowania uranu z nadległych kompleksów pochodzenia wulkanicznego i w wyniku infiltracji została doprowadzona do pokładów węgla. W węglach pochodzących z Górnośląskiego Zagłębia Węglowego, wśród pierwiastków promieniotwórczych występują przede wszystkim naturalne radionuklidy z szeregu uranowego z izotopem macierzystym 238U i z szeregu torowego z izotopem macierzystym 232Th. W skład tych szeregów wchodzą między innymi izotopy radu 226Ra (z rodziny uranowej) i 228Ra (z rodziny torowej). Średnia ich zawartość w węglach tego zagłębia wynosi dla 226Ra – 18 Bq/kg, a dla 228Ra – 11 Bq/kg. Na Górnym Śląsku wraz z wodami kopalnianymi trafia do środowiska naturalnego rocznie około 80 GBq izotopu 226Ra oraz około 140 GBq/rok izotopu 228Ra(79). Zawartości uranu w węglu kamiennym mieszczą się w zakresie od 0,1 do 8,5 mg/kg, zaś toru – od 0,1 do 14,9 mg/kg."
Rozwój elektromobilności czyli ograniczenie roli napędów spalinowych docelowo wykluczy z branży samochodowej circa 25 % obecnych pracowników. Wraz z silnikiem spalinowym zniknie w EU nawet 500 tysięcy miejsc pracy.
Wielka fabryka Tesli w Szanghaju zatrudnia 20 tysięcy pracowników, którzy mogą wyprodukować około 1 miliona pojazdów elektrycznych rocznie. Odpowiada ona za ponad połowę globalnej produkcji koncernu Elona Muska.
Wagę silnika elektrycznego obniżamy stosują lepsze materiały magnetyczne i wydajniejsze chłodzenie oraz optymalizując projekt. Na zdjęciu jest doświadczalny elektryczny silnik lotniczy o mocy 1 MW.
"ChatGPT nie myśli, nie wnioskuje, niczego nie rozumie i nie jest żadną „sztuczną inteligencją”, o ile termin ten rozumiemy zgodnie z ideami ojców dziedziny artificial intelligence jako „autonomiczny program myślący na podobieństwo człowieka” – pisze prof. Andrzej KISIELEWICZ
Niezwykłe możliwości programu ChatGPT wznowiły po raz kolejny dyskusję o zagrożeniach dla ludzkości ze strony sztucznej inteligencji. Dyskusję tę w oczywisty sposób zaburzają zjawiska z jednej strony związane z pogonią za sensacją w mediach, a z drugiej troska badaczy i szefów firm AI o zapewnienie funduszy na dalsze badania. W rezultacie większość informacji na temat GPT i możliwości sztucznej inteligencji, jakie można znaleźć w mediach, w bardzo małym stopniu opiera się na prawdzie. Jako naukowiec zajmujący się sztuczną inteligencją raczej w charakterze recenzenta niż aktywnego badacza nie mam żadnego interesu w reklamowaniu lub dyskredytowaniu osiągnięć AI, mam natomiast dość solidną wiedzę w tym zakresie i szczególną atencję dla prawdy.
Dekadę temu napisałem książkę Sztuczna inteligencja i logika będącą podsumowaniem nieudanego przedsięwzięcia naukowego, jakim była próba zastosowania osiągnięć logiki formalnej do skonstruowania myślących maszyn. Jest tam rozdział o perspektywach rozwoju sztucznej inteligencji, który w świetle nowych osiągnięć, takich jak AlphaGo czy ChatGPT, powinien być uzupełniony. W niniejszym krótkim eseju zainteresowany Czytelnik znajdzie dokładne wyjaśnienie mechanizmów działania programu ChatGPT i moją opinię na temat realnych zagrożeń wynikających z rozwoju sztucznej inteligencji i technologii informacyjnej. Tekst, podobnie jak wspomniana książka, napisany jest z myślą o Czytelnikach posiadających szerokie zainteresowania i dowolne wykształcenie, także czysto humanistyczne.
ChatGPT – sztuczna sieć neuronowa
Zacznę od przedstawienia faktów dotyczących szczegółów budowy programu. ChatGPT jest bardzo inteligentnym programem w tym sensie, że jest wyjątkowo inteligentnym projektem, efektem zbiorowej myśli wielu ludzi o nieprzeciętnej inteligencji. Natomiast program sam w sobie nie ma ani krzty inteligencji, ani krzty inwencji. Jest takim samym programem jak każdy inny program reagujący na polecenia użytkownika (input) dokładnie według wcześniej przygotowanych przez programistów, ściśle określonych instrukcji.
GPT jest skrótem nazwy generative pre-trained transformer, co ujmuje zasadnicze cechy konstrukcji tego programu komputerowego. Generuje on teksty za pomocą techniki obliczeniowej zwanej „siecią neuronową typu transformer”, a parametry sieci zostały ustalone poprzez wcześniejsze jej „trenowanie” na przykładach z olbrzymiej bazy danych tekstowych. Generalnie na wejściu program otrzymuje fragment tekstu w języku naturalnym, na przykład zapytanie, i ma za zadanie wygenerować inny tekst, sensowny i poprawny gramatycznie, który najbardziej pasuje jako kontynuacja danego fragmentu. Dopasowanie określone jest przez bazę danych tekstowych, na której program był trenowany. Można powiedzieć, że program generuje najbardziej prawdopodobną kontynuację tekstu na podstawie tekstów występujących w bazie. Jeśli to jest zapytanie, to kontynuacją powinna być sensowna i trafna odpowiedź.
Sztuczne sieci neuronowe
Sztuczna sieć neuronowa to model obliczeń wzorowany luźno na sieci neuronów w mózgu. W stosunku do rzeczywistej sieci neuronowej w mózgu model ten jest dużym uproszczeniem i nie jest w stanie symulować pracy mózgu (przede wszystkim dlatego, że rzeczywiste mechanizmy działania mózgu i zachodzące w nim zjawiska są nam w przeważającej mierze nieznane). Ale model ten przydaje się jako pewna idea obliczeń komputerowych, takich, w których posiadamy wielki zasób przykładów łączących dane wejściowe z pożądanymi danymi wyjściowymi, lecz nie mamy odpowiedniej teorii, wystarczającego zrozumienia problemu i konkretnych wzorów matematycznych, które mogłyby stanowić podstawę do zaprojektowania odpowiedniego algorytmu.
Myślę, że warto tu przedstawić ideę tego modelu obliczeń, bo ma to zasadnicze znaczenie dla ocenienia, na ile inteligentny jest GPT i jakie są perspektywy jego dalszego rozwoju. (Czytelników o wykształceniu bardziej humanistycznym proszę o cierpliwe przebrnięcie przez kilka następnych akapitów, bo nadają one właściwy sens późniejszym ogólnym rozważaniom). W najprostszym ujęciu sztuczna sieć neuronowa służy do obliczania dowolnych funkcji postaci y = f(x). Jeśli mamy wzór matematyczny takiej funkcji albo precyzyjny sposób jej obliczania (algorytm), to można napisać odpowiedni program, który (w zasadzie) dla każdego x obliczy nam wartość y = f(x). Inna sytuacja jest, gdy mamy jakąś funkcję, która opisuje zjawisko występujące w przyrodzie, ale nie znamy w wystarczającym stopniu mechanizmów tego zjawiska, nie mamy opisu matematycznego; mamy tylko dużo konkretnych przykładów xi, dla których znamy wartości yi = f(xi).
Wówczas właśnie możemy zastosować ideę modelu obliczeń sieci neuronowej. Przekazujemy wartość x do zbioru komórek, które traktujemy jako pierwszy poziom neuronów naszej sieci (rys. 1; w praktyce przekazywane są różne części danych wejściowych x). Następnie do każdej komórki drugiego poziomu przekazywane są wartości z każdej komórki pierwszego poziomu modyfikowane wagą przypisaną do każdego połączenia (zwykle oznacza to jakiś ułamek oryginalnej wartości).
Te zmodyfikowane (ułamkowe) wartości są sumowane (ewentualnie poddane jeszcze jakiejś dodatkowej prostej operacji) i tak otrzymana wartość zapisywana jest w danej komórce drugiego poziomu. To samo dzieje się między poziomem drugim i trzecim, i kolejnymi, aż suma wartości uzyskanych na ostatnim poziomie zmodyfikowanych wagami końcowych połączeń zostanie przekazana do ostatniej komórki, która reprezentuje obliczoną wartość y. Oczywiście wartość y zależy od wartości x oraz od wszystkich wag zastosowanych po drodze. Wiemy, że dla dowolnej funkcji f (ze skończonym zbiorem argumentów) można dobrać taką sieć i takie wagi, że odpowiedni program będzie obliczał dokładnie funkcję y = f(x) (to znaczy, jeśli programowi podamy wartość x na wejściu, to zwróci nam wartość y = f(x) na wyjściu). Problem w tym, jak znaleźć odpowiednie wagi przy z góry zadanej strukturze i rozmiarach sieci.
Uczenie sieci – trening
Tu w grę wchodzi idea uczenia (trenowania) takiej sieci. Ustawiamy na początku wagi dowolnie (lub kierując się jakąś wstępną wiedzą) i uruchamiamy program uczenia. Podajemy programowi kolejne znane nam przykłady i porównujemy otrzymaną wartość z wartością oczekiwaną. Jeśli są różne, to modyfikujemy nieznacznie wagi według jakiegoś pomysłu, tak żeby otrzymać wartość bliższą oczekiwanej. Jest wiele pomysłów na to, jak automatycznie modyfikować wagi, żeby nie skakać od skrajności do skrajności i żeby stopniowo przybliżać je do prawidłowych wartości. Niestety, generalnie osiągnięcia na tej drodze były słabe. W przypadku większości problemów czas uczenia takiej ogólnej sieci okazuje się zbyt długi albo w ogóle nie widać postępu w modyfikacji wag. Dopiero idea deep learning w dziedzinie sztucznych sieci neuronowych umożliwiła znaczący postęp w zastosowaniach.
Trzeba zwrócić uwagę, że odwołując się do obliczania funkcji, nic nie tracimy na ogólności, bo w komputerze każde dane (obrazy, dźwięki, teksty) reprezentowane są jako liczby i każdy program, który przyjmuje na wejściu jakieś dane i zwraca inne dane, sprowadza się do obliczania pewnej funkcji. Sieci neuronowe najlepsze zastosowania znajdują w specyficznych dziedzinach, takich jak rozpoznawanie obrazu, identyfikacja obiektów, przetwarzanie mowy, wynajdywanie anomalii w bazach danych, przetwarzanie języka naturalnego itp. Deep learning to pomysłowa technika modyfikacji wag i innych parametrów sieci, w której programista znacznie bardziej ingeruje w proces uczenia, wykorzystując swoje rozumienie problemu i wskazując sieci istotne cechy danych na wejściu, które sieć powinna najpierw nauczyć się rozpoznawać i identyfikować, żeby wykonać zadanie bardziej złożone. Z punktu widzenia sztucznej inteligencji można to uznać za regres: rezygnację z ogólności i autonomii programu na rzecz lepszych osiągnięć w ograniczonej i dobrze zdefiniowanej dziedzinie. Jeszcze bardziej wyszukane (i ograniczające) techniki modyfikacji parametrów sieci zawarte są w sieciach typu transformer, specjalnie zaprojektowanych do przetwarzania tekstów traktowanych jako pewne całości (a nie przypadkowe ciągi słów).
W pewnym sensie można powiedzieć, że sieć w swoich parametrach wytrenowanych na zbiorze przykładów „zapamiętuje” cechy tego zbioru, tak że po podaniu jej danych wejściowych x jakiegoś z przykładów zwraca prawidłowe dane wyjściowe y = f(y) (lub ich akceptowalne przybliżenie). Jeśli ten zbiór stanowi dostatecznie duży lub dostatecznie reprezentatywny zbiór przykładów pewnej rzeczywistej funkcji (zależności) występującej w przyrodzie, to możemy mieć nadzieję, że przy podaniu sieci nieznanych danych x (spoza zbioru przykładów) wygeneruje ona prawidłowe y, odpowiadające rzeczywistej wartości y = f(x), czyli że prawidłowo będzie ona obliczać całą funkcję, również w jej nieznanej części.
Kluczowa cecha – masowość obliczeń
Pierwszą istotną cechą sieci ChatGPT jest to, że liczby parametrów i połączeń w niej idą w miliardy. Liczba parametrów w GPT-3.5 szacowana jest na 175 miliardów, a rozmiar zbioru danych tekstowych na 570 GB, co z grubsza odpowiada milionowi książek (wśród tych danych są np. dokumenty internetowe, cała angielska Wikipedia, setki tysięcy książek specjalistycznych). To, że program jest w stanie w fazie treningu przejrzeć odpowiednią liczbę razy i „zapamiętać” w swoich parametrach ten cały zbiór danych, możliwe jest dzięki jednoczesnym niezwykłym postępom technologii komputerowej. Siła obliczeniowa współczesnych komputerów, tysiąc razy większa niż jeszcze 10 lat temu, jest tu czynnikiem kluczowym.
To właśnie dzięki temu i możliwości wykonywania miliardów operacji w ciągu jednej sekundy, oprócz wyszukanych technik dostrajania parametrów sieci, zawdzięczamy fakt, że rezultat jest wręcz oszałamiający: ChatGPT zaskakująco dobrze symuluje inteligentnego eksperta od wszystkiego, który „rozumie”, co mówimy, i „mówi” nienaganną angielszczyzną (a także wieloma innymi językami) – jak żaden człowiek na świecie. Efekt jest doprawdy genialny i oszałamiający. Nazwa „sztuczna inteligencja” wydaje się użytkownikom jak najbardziej adekwatna. Oszołomienie potęguje fakt, że nie jesteśmy w stanie przewidzieć reakcji tego programu. Nie wiemy, jak ustawione są wagi w sieci, nie wiemy, co one znaczą, i jako że są ich miliardy, nie jesteśmy w stanie ich poznać. Co więcej, działanie sieci typu transformer zawiera również pewne elementy losowe, np. próbkowanie z rozkładu prawdopodobieństwa. W rezultacie generowany tekst zależy w pewnym stopniu od przypadku. Generalnie nie jesteśmy w stanie dokładnie przewidzieć, jaki tekst zostanie wygenerowany. To, co się dzieje w środku programu, jest typową „czarną skrzynką”.
Cenzura wypowiedzi
Trzeba dodać, że poza głównym mechanizmem trenowania sieci ogólnymi wyszukanymi technikami deep learning i transformer w programie ChatGPT zastosowano techniki pre– i post-processingu, dodające różne filtry i ograniczenia w celu kontrolowania generowanych odpowiedzi. Na przykład przed prezentacją odpowiedzi użytkownikowi program przeprowadza weryfikację zawartości, kontrolę gramatyki, filtrowanie nieodpowiednich treści, cenzurę niepożądanych wyrażeń itp. Filtry te zaprogramowane są niejako „ręcznie”, więc są na tyle skuteczne, na ile programistom udało się świadomie ograniczyć niepożądane efekty i błędy. W szczególności pewne łatwo obserwowalne cechy ChatGPT, jak na przykład grzeczność i polityczna poprawność, unikanie dostarczania informacji niebezpiecznej lub kryminogennej i inne charakterystyczne zachowania są rezultatem takich dodatkowych filtrów.
Niedoskonałość takich ręcznych technik filtrowania pokazuje przykład dotyczący wcześniejszej wersji ChatGPT, która na prośbę o podanie stron internetowych z filmami pornograficznymi odmawia, powołując się na etykę, a na prośbę o podanie stron, które należy zablokować, żeby ich dzieci nie mogły oglądać, podaje pełną listę. Program nie rozumie, że w istocie jest to to samo pytanie.
Czy ChatGPT myśli?
Żeby uzmysłowić sobie jak mało wspólnego GPT ma z naturalną inteligencją, można powiedzieć, że w czacie GPT jest tyle samo myślenia co w teoretycznym programie, który szuka zadanego fragmentu tekstu w olbrzymim zbiorze danych i gdy znajdzie, to po prostu przepisuje jego kontynuację; gdy zaś nie znajdzie, to stara się znaleźć tekst najbardziej podobny i przepisując kontynuację, stosuje odpowiednie modyfikacje. Taki program jest tylko teoretyczny, bo każdorazowe przeszukiwanie całego zbioru danych wielkości 570 GB przy obecnej wydajności komputerów trwałoby tygodniami. A my potrzebujemy prawie natychmiastowej reakcji programu na każde zapytanie. Stąd pośrednia realizacja powyższego pomysłu: najpierw „trenujemy” sieć, żeby „zapamiętała” w swoich miliardach parametrów najistotniejsze cechy zbioru danych tekstowych, a odpowiedzi dostatecznie bliskie oryginalnym przykładom generuje sieć i robi to dostatecznie szybko.
Z powyższego opisu wynika, że ChatGPT nie myśli, nie wnioskuje, niczego nie rozumie i nie jest żadną „sztuczną inteligencją”, o ile termin ten rozumiemy zgodnie z ideami ojców dziedziny artificial intelligence jako „autonomiczny program myślący na podobieństwo człowieka”. Chciałoby się rzec, że GPT nic nie rozumie, bo generuje kontynuację tekstu wyłącznie na podstawie cech zewnętrznych tekstu, ponieważ ma charakter czysto syntaktyczny, bez żadnej semantyki. Ale nie jest to całkiem prawdą. W procesie uczenia deep learning zawarta jest też pewna wiedza na temat znaczeń słów, ich bliskoznaczności itp. Brak jest natomiast wiedzy na temat znaczeń zdań (i ciągów zdań), bo my, ludzie, ciągle nie wiemy, na czym polega ten fenomen, jak zdanie języka naturalnego uzyskuje znacznie (model formalno-logiczny okazał się nieadekwatny, a filozoficzne rozprawy na ten temat nie dają nam niestety takiego zrozumienia problemu, które można by wykorzystać w programowaniu).
Myślenie i inteligencja
Są inżynierowie AI, którzy na poważnie twierdzą, że ChatGPT jednak myśli, że podobny jest (ich zdaniem) mechanizm myślenia w mózgu ludzkim, gdzie rzecz polega również na wykonywaniu w sposób prawie deterministyczny, z elementami losowości, pewnego algorytmu. Sprzyja temu niezwykły efekt programu GPT, którego liczne reakcje na nasze zapytania zdają się w ewidentny sposób przekraczać zdolności intelektualne pojedynczych ludzi.
Twierdzenia o tym, że myślenie jest po prostu wykonywaniem pewnego złożonego algorytmu, że ma charakter podobny do działania programu komputerowego, towarzyszą badaniom nad sztuczną inteligencją od początku tej dyscypliny. Trudno z nimi polemizować, gdy wiemy, na czym polega działanie programu komputerowego, a nie wiemy, na czym polega nasze myślenie, gdy nie jesteśmy w stanie porównać mechanizmów działania. Możemy jedynie wyrazić nasze odmienne przekonanie, że mechanizmy myślenia w mózgu są jednak znacznie bardziej skomplikowane. A na wsparcie tego przekonania przytaczać różne fakty. Stosunkowo nowym potwierdzeniem na rzecz tej ostatniej tezy jest odkrycie, że budowa neuronu okazuje się znacznie bardziej skomplikowana i wielopoziomowa, a jego funkcje znacznie bardziej złożone niż owa prosta idea zastosowana w sztucznej sieci neuronowej. Jeśli chodzi o sam ChatGPT, to wystarczy dobrać odpowiednie przykłady, żeby wykazać zupełnie bezspornie, że ten program nie myśli i nie umie wyciągać najprostszych wniosków.
Swego czasu popularna była tzw. operacyjna definicja sztucznej inteligencji oparta na słynnym teście Turinga. Najkrócej: jeśli człowiek nie jest w stanie odróżnić podczas czatu odpowiedzi człowieka od odpowiedzi programu komputerowego, to znaczy, że program osiągnął poziom ludzkiej inteligencji. Czy ChatGPT przeszedłby test Turinga? Wygląda na to, że nie ma nawet sensu organizować tego testu. Oryginalny warunek Turinga na uznanie programu komputerowego za obdarzonego inteligencją wymagał, żeby co najmniej 70 proc. ludzi nie było w stanie odróżnić odpowiedzi komputera od odpowiedzi człowieka. ChatGPT łatwo odróżnić: jego odpowiedzi są „za mądre” jak na człowieka, zbyt wszechstronne. Można zaryzykować twierdzenie, że dziś nawet 90 proc. ludzi uznałoby ChatGPT-3.5 za… inteligentniejszy od człowieka – mądrzejszy od dowolnego laureata Nagrody Nobla.
Przykład
Pokazanie, że ChatGPT-3.5 ma olbrzymią wiedzę, ale nie umie myśleć, nie umie wnioskować i nie rozumie tekstu, który przetwarza, czyli wymyślenie odpowiednio „niewygodnych” pytań, wymaga pewnej znajomości mechanizmu działania programu. Niektórzy trafiają na takie sytuacje przypadkowo. Ja po serii prób doszedłem do takiego krótkiego czatu, który każdy może ocenić sam:
JA: Adam przyszedł do restauracji z dwiema dziewczynami: Alą i Olą. Te trzy osoby trzeba rozsadzić przy okrągłym stoliku tak, żeby dziewczyny nie siedziały koło siebie. Czy to jest możliwe?
GPT: Tak, jest możliwe rozsadzić Adama, Alę i Olę przy okrągłym stoliku w taki sposób, żeby dziewczyny nie siedziały obok siebie. Oto jedno z możliwych rozwiązań:
Adam
Ola
Ala
Adam
W tym układzie dziewczyny są oddzielone przez Adama, który siedzi między nimi. Ważne jest, aby zauważyć, że przy okrągłym stole istnieje wiele możliwości rozsadzenia osób, a to tylko jedno z wielu rozwiązań.
JA: Twoja odpowiedź jest błędna, bo zawiera dwóch Adamów.
GPT: Przepraszam za mój błąd. Oto poprawione rozwiązanie:
1. Adam 2. Ola
Adam
Ala
W tym przypadku dziewczyny są rozdzielone przez Adama, który siedzi między nimi. Jeszcze raz przepraszam za zamieszanie spowodowane wcześniejszym błędem. Dziękuję za zwrócenie uwagi.
JA: Masz rozsadzić trzy osoby, a nie cztery. Wskaż sposób rozsadzenia 3 osób!
GPT: Przepraszam za moje pomyłki. Oto poprawione rozwiązanie dla trzech osób:
Adam
Ola
Ala
W tym układzie Adam siedzi obok Oli, a Ola jest oddzielona od Ali przez Adama. Dzięki temu obie dziewczyny nie siedzą obok siebie. Jeszcze raz przepraszam za zamieszanie i dziękuję za cierpliwość.
Po tej próbce możliwości ChatGPT-3.5 można zapytać retorycznie, kto gotów jest powierzyć tej „sztucznej inteligencji” kierowanie statkiem kosmicznym lub jakiekolwiek odpowiedzialne zadanie? (Warto dodać, że komercyjny ChatGPT-4 „próbuje rozwiązać” to zadanie w podobny sposób).
Zastosowania GPT
Nie zmienia to faktu, że GPT jest fantastycznym osiągnięciem programistycznym, które ma szereg znakomitych potencjalnych zastosowań. Po pierwsze, znacznie ulepsza proces wyszukiwania informacji w porównaniu z klasyczną wyszukiwarką Google’a. Odpowiednimi pytaniami można nakierować program dokładnie na informacje, które nam są potrzebne. GPT potrafi rozwiązywać zadania z matematyki i fizyki, łatwe i nawet bardzo trudne. Oczywiście polega to w swej istocie na modyfikowaniu rozwiązań znajdujących się w zbiorze danych treningowych. Tutaj użytkownik musi sprawdzić, czy modyfikacja jest trafna. Jeśli chodzi o matematykę, to często taka modyfikacja powoduje jakąś niespójność, błąd, który dyskwalifikuje całe rozwiązanie. Jednak najczęściej pokazuje to właściwą metodę rozwiązania i jest bardzo pomocne, wystarczające dla kogoś rozumiejącego matematykę zawartą w zadaniu i rozwiązaniu.
GPT jest świetny jako przeglądarka różnych obszernych tutoriali i instruktaży. Na przykład dużo łatwiej zapytać GPT, jak wykonać jakąś operację w Excelu, żeby uzyskać jakiś efekt, niż szukać tego w bardzo obszernym tutorialu. GPT nadaje się świetnie do tworzenia różnych tekstów okolicznościowych, szczególnie o rutynowym charakterze – trzeba tylko ogólnie napisać, co ma być w tekście, i sprawdzić, co wygeneruje program. Zwykle wystarczą niewielkie własne poprawki, żeby tekst dokładnie spełniał nasze wymagania. GPT nadaje się także znakomicie do korekty napisanego tekstu (szczególnie przydatne, gdy piszemy w języku innym niż ojczysty), do automatycznych tłumaczeń, do tworzenia podsumowań długich tekstów. Jakość jest naprawdę wysoka. GPT potrafi też pisać krótkie programy komputerowe w różnych językach, chociaż tutaj, jak wszędzie, wymagane jest sprawdzenie przez użytkownika wygenerowanego kodu.
Problem w tym, jeszcze raz to podkreślmy, że GPT nie posiada żadnej zdolności rozumienia ani odróżniania prawdy od fałszu. Dlatego zawsze konieczne jest sprawdzenie rezultatu, jeśli zamierzamy go użyć w praktyce, w takim czy innym celu. Niemniej jest wielce prawdopodobne, że GPT i inne podobne transformatory tekstu zrewolucjonizują edukację, choćby dlatego, że nauczyciele będą musieli znaleźć sposoby obrony przeciwko masowemu wykorzystywaniu tych programów przez uczniów.
Głosy autorytetów
W trakcie dyskusji na ten temat na moje uwagi jeden z interlokutorów parający się zawodowo filozofią odpowiedział, że on woli jednak ufać fachowcom z dziedziny sztucznej inteligencji, bezpośrednim współtwórcom nowych technologii i zachodnim autorytetom naukowym. A ci w większości przestrzegają przed zagrożeniami i przewidują rychłe powstanie sztucznej inteligencji przekraczającej inteligencję człowieka (Artificial General Intelligence). Odrzekłem, iż rozumiem taką postawę laika, ale mam nadzieję, że filozof weźmie pod uwagę argumenty pokazujące, że taka postawa jest poznawczo bardzo wątpliwa.
Problem w tym, że większość wypowiadających się badaczy dziedziny jest żywotnie zainteresowanych tym, żeby obraz stanu badań był jak najbardziej obiecujący. Od ich wypowiedzi zupełnie bezpośrednio zależy poziom finansowania dziedziny. System grantowy finansowania badań naukowych preferuje koloryzowanie perspektyw badawczych. Większość wypowiadających się publicznie to fachowcy w bardzo specjalistycznych dziedzinach, niemający czasu i odpowiedniego wykształcenia, pozwalającego na szerszą refleksję nad całością badań (współczesna nauka zdecydowanie preferuje ścisłą specjalizację; różne próby badań interdyscyplinarnych mają na ogół złą renomę w świecie nauki). Wypowiedzi specjalistów na tematy ogólne mają więc cechę wspólną z medialnymi wypowiedziami celebrytów… na dowolny temat. Drugą grupą wypowiadających się są przedstawiciele mediów. Tu rzecz jest oczywista. Media zainteresowane są głównie sensacją. Zagrożenie sztuczną inteligencją to nośny temat odgrzewany przy okazji każdego spektakularnego osiągnięcia w dziedzinie AI. W odniesieniu do sztucznej inteligencji nie jest łatwo znaleźć wypowiedź, która nie miałaby cech stronniczości i była oparta na wiedzy i rozeznaniu. Żeby taką wypowiedź rozpoznać, trzeba mieć rozeznanie w dziedzinie i odpowiednią wiedzę.
Co mówi Sam Altman?
Jeśli dobrze poszukać, to można znaleźć w internecie bardziej szczerą wypowiedź Sama Altmana, szefa laboratorium badawczego OpenAI, które wyprodukowało GPT. W wywiadzie zatytułowanym OpenAI’s CEO Says the Age of Giant AI Models Is Already Over [LINK] twierdzi on, że strategia badawcza bazująca na masowości obliczeń, która przyniosła sukces ChatGPT, jest wyczerpana. Dalsze zwiększanie modelu nie przyniesie już wyraźnych postępów. Przyszły rozwój sztucznej inteligencji będzie wymagał nowych pomysłów. Nie bardzo wiadomo jakich. Powiedział też, a było to w kwietniu 2023 r., że obecnie OpenAI nie pracuje nad kolejnym modelem GPT-5.
Najwidoczniej odpowiedzialni za finanse firmy przywrócili szefa do pionu, bo niecałe dwa miesiące później w wideo na YouTube zatytułowanym OpenAI CEO Sam Altman Reveals Shocking GPT-5 Details [LINK] przekonywał, że GPT-4 będzie niczym w porównaniu z powstającym właśnie GPT-5. W nowym modelu zapowiedział dowolną długość tekstu na wejściu, ograniczenie przesadnych przeprosin i pomniejszania swojej wartości przez program, nadanie mu charakteru większej pewności siebie i wiarygodności oraz większą spójność z wcześniejszymi fragmentami konwersacji. Zapowiedział również ulepszenie zdolności obliczeń matematycznych i rozumowania logicznego. I wreszcie GPT-5 ma być bardziej kontaktowy – dopuszczający dane multimedialne, rysunki, zdjęcia, nagrania, reagujący na mowę, a nawet na gesty i emocje rozmówcy. To już prawdziwa sztuczna inteligencja – powie ktoś.
Część z tych obietnic ma charakter trywialny (kwestia odpowiednich filtrów); część z pewnością da się osiągnąć zwiększeniem (jednak) rozmiarów modelu. Wprowadzenie kontaktu audio-wizualnego jest w zakresie możliwości współczesnej technologii, chociaż z pewnością będzie wymagało mnóstwo pracy i nie jest wykluczone, że nie uda się tego osiągnąć w zapowiadanym terminie do połowy roku 2024. Ulepszenie zdolności do rozwiązywania zadań matematycznych można osiągnąć poprzez wytrenowanie modelu na odpowiednio zwiększonym zbiorze przykładowych rozwiązań, jednak przy tej technice nie da się wyeliminować regularnych błędów w rozwiązaniach, bo nie ma żadnego pomysłu na automatyczne sprawdzanie poprawności rozwiązań (nie ma nic o tym w literaturze i nie słychać o żadnych badaniach w tym kierunku). Ulepszenie zdolności do rozwiązywania zadań matematycznych można też osiągnąć poprzez włączenie w model technik bezpośredniego zastosowania znanych algorytmów tak jak w programie Wolfram Alpha – program musiałby decydować, czy użyć technik modelu językowego, czy bezpośrednich algorytmów rozwiązania. Natomiast możliwości ulepszenia zdolności do logicznego rozumowania nie widzę, tak jak nie widzę możliwości wyposażenia GPT w zdolność odróżniania prawdy od fałszu. Więcej o tym za chwilę.
Co to jest sztuczna inteligencja?
Swego czasu toczyły się poważne dyskusje na temat definicji sztucznej inteligencji (przy pełnym braku rozeznania roli i funkcji definiowania w praktycznej logice – trzymano się wówczas wzorców z logiki formalnej). Dziś wypracowano pojęcie „ogólnej sztucznej inteligencji” (ang. Artificial General Intelligence, AGI) na określenie (potencjalnego) programu komputerowego, który osiągnie poziom inteligencji człowieka we wszystkich aspektach ludzkiego myślenia (a w wielu go przewyższy ze względu na znacznie większy od człowieka potencjał obliczeniowy). AGI odróżniać należy od specjalistycznych systemów AI (specjalistycznych systemów sztucznej inteligencji) wykonujących konkretne ograniczone zadania, które wykonywane przez człowieka wymagają inteligencji. Są to zazwyczaj zadania bardzo wyspecjalizowane, za to jakość ich wykonywania często przekracza możliwości człowieka.
W tym miejscu trzeba wyraźnie powiedzieć: AGI nie istnieje i nie widać jej na horyzoncie badań. Do specjalistycznych systemów AI znacznie bardziej pasuje nazwa „inteligencja obliczeniowa” (ang. computational intelligence). Ich siła bierze się głównie z olbrzymiej mocy obliczeniowej. Przez pewien czas była tendencja, żeby nazwę artificial intelligence zamienić właśnie na computational intelligence, ale zwyciężyły, jak widać, względy marketingowe, a razem z nimi ciągle trwające pomieszanie pojęć w głowach klientów, odbiorców i sponsorów.
Warto zdawać sobie sprawę, że historia AI to prawdziwy ciąg obietnic bez pokrycia. W roku 1970 Marvin Minsky, jeden z ojców założycieli dziedziny AI, powiedział był w „Life Magazine”, że „w ciągu trzech do ośmiu lat będziemy mieli maszynę z ogólną inteligencją na poziomie przeciętnego człowieka”. Podobne zapowiedzi o maszynach, które osiągną i przekroczą w sposób niewyobrażalny ludzką inteligencję, były składane wcześniej i później wielokrotnie przez wybitnych naukowców, w tym nawet laureatów Nagrody Nobla, skutecznie mieszając ludziom w głowach. W swoich ostatnich wypowiedziach sprzed dekady Marvin Minsky mówił, że ogólną sztuczną inteligencję będziemy mieli „za osiem lub za czterysta lat”. To akurat bardzo trafnie oddaje poziom naszej wiedzy na temat ogólnych mechanizmów inteligencji będącej podstawą tej projekcji.
Uczenie się na błędach i porażkach
Z historią sztucznej inteligencji Czytelnik może zapoznać się w mojej książce Sztuczna inteligencja i logika. Starałem się tam opisać tę historię obiektywnie, jako osoba, która nie jest zainteresowana ani umniejszaniem osiągnięć, ani nadmiernym pompowaniem sukcesów. Główną treścią tej książki jest jednak pogłębiony opis i analiza zakończonego już przedsięwzięcia naukowego, prowadzonego w ramach badań nad sztuczną inteligencją, jakim była próba wykorzystania osiągnięć logiki formalnej do zbudowania myślących maszyn. Ta próba, znana jako logical approach in AI, skończyła się spektakularną klapą i warto zastanowić się dlaczego. Byłem przekonany, że lada chwila powstaną podobne książki w języku angielskim, więc nawet nie usiłowałem zainteresować wydawców zagranicznych tłumaczeniem mojej książki. Owszem, kilku najbardziej znanych przedstawicieli AI przyznało półgębkiem, podczas półprywatnych spotkań, na konferencjach, że ten kierunek badań nie zakończył się sukcesem, ale ewidentnej klęski nikt nie chciał publicznie ogłaszać, a tym bardziej zagłębiać się w jej przyczyny. Wedle mojej najlepszej wiedzy do dziś nie ma na Zachodzie książki analizującej powody tej dramatycznej porażki. Oczywista prawda, że powinniśmy się uczyć także na błędach, nie znajduje zastosowania w nauce, gdzie obowiązuje system finansowania grantowy i zasady jak najlepszej reklamy mającego powstać produktu.
Mógłby ktoś pomyśleć, że moja książka o sztucznej inteligencji jest już nieaktualna, bo rozwój AI bardzo przyspieszył w ostatnich latach. A jednak jest przeciwnie. Co prawda moja książka została wydana w 2011, a nowe poprawione wydanie w 2015 r., ale pozostaje aktualna w najwyższym stopniu, ponieważ w większości dotyczy analizy porażki przedsięwzięcia naukowego – nikt inny nie uznał za stosowne dokonać takiej analizy ani wyciągnąć wniosków. W mojej książce wystarczyłoby dopisać niewielki rozdział o znakomitych osiągnięciach AI w ostatniej dekadzie – w celu uaktualnienia obrazu (w szczególności o rozwoju technik uczenia sieci neuronowych i metod obliczeń masowych opartych na probabilistyce), wskazać, że jest to zgodne z przewidywaniami zawartymi w pierwszym wydaniu książki i podkreślić, że jednak te technologie nie mają wiele wspólnego z oryginalnym celem stworzenia ogólnej AI, a samodzielnie „myślącej maszyny” nie widać ciągle nawet na horyzoncie badań.
Zagrożenia
Obawa, że myślące maszyny czy też jakaś egzystująca w sieci sztuczna inteligencja zaatakują ludzi, opanują ludzką cywilizację, to na dzisiaj „bajki dla robotów”, żeby odwołać się do tytułu książki Lema; kompletna fantasmagoria. Jednym z „apostołów” tej fantasmagorii na polskim gruncie jest prof. Andrzej Zybertowicz (moje dyskusje z nim stały się zaczynem tego artykułu). Pomysł, żeby umożliwić programom takim jak GPT automatyczne uruchamianie jakichś procesów fizycznych, bez nadzoru człowieka, jest tak samo mądry, jak uzależnienie uruchomienia rakiet z głowicami atomowymi od rzutu monetą. Oczywiście nie da się wykluczyć, że ktoś gdzieś na taki pomysł wpadnie, ale zagrożeniem jest tu ludzka głupota, a nie sztuczna inteligencja. Realnie można mówić o zagrożeniach rozwojem specjalistycznych systemów AI, ale mieszanie do tego nazwy „sztuczna inteligencja” tworzy fałszywe wyobrażenia i odwraca uwagę od istoty zagrożenia. Należy więc mówić precyzyjniej o zagrożeniu dalszym rozwojem technologii informacyjnych. Jest ono realne, na tyle, na ile realne zagrożenia niesie ze sobą rozwój każdej nowej technologii – może być ona użyta w złych celach.
Jednak (jak słusznie zwraca uwagę prof. Zybertowicz) rozwój nowych technologii informacyjnych niesie ze sobą również specyficzne zagrożenia, których nie ma w przypadku na przykład broni masowej zagłady. Jedno z nich to fakt, że rozwój ten zdaje się wymykać spod naszej kontroli, a jednocześnie zmieniać rewolucyjnie nasze życie społeczne, w kierunku, który bynajmniej nie wydaje się ani dobry, ani pożądany. Wizja, gdzie ludzie większość życia spędzają w świecie wirtualnym, przylepieni do laptopów i smartfonów czy z czymś w głowie, co zastąpi w przyszłości te urządzenia, ma charakter raczej przerażający. Dążymy w tym kierunku jakby wbrew naszej woli. Na potencjalnie katastrofalne zastosowanie programów typu GPT zwrócił z kolei uwagę mój kolega prof. Jerzy Surma.
Realna jest idea takich zindywidualizowanych programów, które nie tylko mogą rozmawiać z tobą na wszystkie tematy, ale mogą przede wszystkim rozmawiać z tobą na twój temat i twoich problemów, bo uczą się ciebie – stają się twoim największym przyjacielem, powiernikiem, odgadują twoje nastroje – a przy okazji, czemu nie, mówią ci, na kogo powinieneś głosować. Realne jest zagrożenie, że wielkie korporacje czy quasi-totalitarne reżimy użyją zaawansowanych narzędzi informatycznych do manipulacji społeczeństwami i ich kontrolowania. Nie żadna sztuczna inteligencja, ale olbrzymia moc obliczeniowa współczesnych komputerów i algorytmy przetwarzania olbrzymich baz danych umożliwiają pełną kontrolę nad całymi społeczeństwami i każdym obywatelem z osobna. (To, że algorytmy te rozwijane są w ramach badań sygnowanych etykietą AI, nie ma tu znaczenia).
Zabronić badań?
Postulaty, żeby zabronić badań nad sztuczną inteligencją (które według doniesień medialnych zgłasza nawet sam Elon Musk) oparte są na nieporozumieniach związanych z nazwą „sztuczna inteligencja”. Jeśli już, to trzeba by postulować zaprzestanie dalszego rozwoju technologii informacyjnych w ogóle, bo trudno tu oddzielić nowoczesne produkty niosące zagrożenia od tych ewentualnie bezpiecznych (kto miałby dokonywać segregacji?). Liczyć na to, że Chiny zastosują się do tych szlachetnych apeli, graniczy z brakiem wyobraźni klimatystów, a same apele mają w sobie jednak element buntu woźniców przeciw automobilom. Wydaje się, że najlepszym lekarstwem na część tych zagrożeń jest równoległy rozwój społeczeństwa i świadomości, że zbytnie uzależnienie od produktów IT ma charakter nałogu, z którym w przypadkach skrajnych należy walczyć tak samo jak z uzależnieniem narkotykowym. Z doniesień medialnych wiadomo, że szefowie firm IT mocno chronią swoje dzieci przed nadużywaniem smartfonów i laptopów i dbają przede wszystkim o ich zdrowy fizycznie tryb życia. Mam poważne wątpliwości, czy Sam Altman, promujący model edukacji OpenAI Academy na bazie czata GPT, wybierze taki właśnie model kształcenia dla swoich dzieci. Nowy model edukacji powinien przede wszystkim wziąć pod uwagę, jak zbalansować dostęp do produktów technologii IT z zajęciami o całkowicie odmiennym charakterze.
Słuszne jest przestrzeganie i zwracanie uwagi na możliwość użycia nowoczesnej technologii informacyjnej do manipulacji społeczeństwami, a w konsekwencji do zniszczenia mechanizmów demokracji. Ale powinno to iść w parze z dostrzeżeniem innych nowych zagrożeń dla demokracji, jakim są na przykład neomarksistowskie eksperymenty w zachodnich demokracjach, pachnące niepokojąco „nowym, wspaniałym światem”. Przyjmując stoicką postawę: albo nam się uda uratować demokrację i ją naprawić (bo w tej chwili jest w ewidentnym kryzysie), albo będziemy mieli kolejny totalitaryzm, tym razem w świecie Zachodu, z wykorzystaniem zaawansowanej technologii IT albo bez, kto to wie, totalitaryzm, który wprowadzą wielkie korporacje albo „zjednoczona partia wielkiego postępu” (która może nawet będzie palić smartfony i laptopy na stosach); a co będzie potem, to Bóg jeden raczy wiedzieć.
Logiczne myślenie i rozumienie języka naturalnego
Najsłabszą stroną programu ChatGPT i innych specjalistycznych systemów AI jest brak zdolności do wyciągania logicznych wniosków, brak mechanizmów logicznego myślenia w tych systemach. (Dobitnie ilustruje to przykład załączony powyżej). Po klęsce próby zastosowania logiki formalnej w badaniach nad sztuczną inteligencją musimy dojść do wniosku, że nie wiemy nawet, na czym właściwie polega praktyczne, logiczne myślenie, praktyczne rozumowanie (nie uczymy tego w szkołach!), więc niby jak chcemy skonstruować myślące maszyny? Na ślepo?
Łączyć, łączyć sieci neuronowe, aż może inteligencja i świadomość same się wyłonią? Niektórym może trudno uwierzyć, ale takie jest ciągle podejście niektórych naukowców do AI.
Próbę zrozumienia zagadnień związanych z logicznym myśleniem zawiera moja druga książka Logika i argumentacja. Analiza tam zawarta pokazuje w szczególności, jak daleka jest droga do stworzenia prawdziwej sztucznej inteligencji na podstawie naszej wiedzy i rozeznania w tym zakresie. Trudno sobie wyobrazić prawdziwą sztuczną inteligencję bez rozumienia języka naturalnego, bez umiejętności stwierdzenia, że dwa zupełnie różne ciągi zdań mogą znaczyć w zasadzie to samo. Przypomnijmy przywoływany już przykład – sztuczna inteligencja powinna wiedzieć, że prośba o podanie jakichś zakazanych stron internetowych i prośba o podanie stron, które „chciałbym zablokować dziecku”, są w pewnym zakresie tożsame. W książce podaję inne przykłady, w których dwa zupełnie różne ciągi zdań w języku naturalnym mają w istocie to samo znaczenie.
Co to jest znaczenie? Wydaje nam się, że wiemy mniej więcej, co to jest znaczenie słowa, chociaż dla bardziej abstrakcyjnych słów nasze intuicje się rozmywają. Jednak mechanizmu przypisywania znaczenia zdaniom lub ciągom zdań języka naturalnego po prostu na razie nie rozumiemy. Model formalno-logiczny, który próbowano zastosować w logicznym podejściu do AI w stosunku do języka naturalnego, okazał się kompromitującym uproszczeniem i odsłonił jedynie nasze pokłady niewiedzy. Logiczne myślenie i rozumienie języka naturalnego ciągle pozostaje wąskim gardłem w badaniach nad sztuczną inteligencją, z czego wielu specjalistów w ogóle nie zdaje sobie sprawy.
Prawda
Podobny i ściśle związany z powyższym jest problem z rozpoznawaniem prawdy. Czymże jest prawda? Ileż mamy dzieł filozoficznych na ten temat? Ileż analiz? Tyle, że nie dają nam one żadnej praktycznej wskazówki, która pozwoliłaby programowi komputerowemu odróżnić prawdę od fałszu. Celebrowana „definicja prawdy” Alfreda Tarskiego, napisana w ścisłym języku matematyki – za przeproszeniem – zda się psu na budę, tak jak cały formalno-logiczny model rozumowania – przynajmniej jeśli chodzi o skonstruowanie myślącej maszyny. Brak możliwości zastosowania naszych „mądrości” na temat prawdy, logiki i języka w programach komputerowych w celu uczynienia ich „mądrzejszymi” jest znakomitym przykładem dla właściwej oceny wartości części naszej wiedzy pielęgnowanej na uniwersytetach: albo jest ona bezwartościowa, albo ma inny charakter niż wiedza nauk ścisłych, i tej różnicy jak widać również nie rozumiemy. Zresztą utrzymywanie, a nawet zwycięski marsz na dzisiejszych uniwersytetach dziedzin, które przeczą śmiało i bez zawstydzenia zdrowemu rozsądkowi, jest najlepszym dowodem naszej intelektualnej niedojrzałości. Chwilowy kryzys czy objaw nadciągających wieków ciemnych? Czas pokaże. Wizja sztucznej inteligencji współegzystującej z powszechną ludzką głupotą, znakomitych osiągnięć technologicznych z degeneracją więzi społecznych, internet jako narzędzie do szerzenia i utrzymywania dezinformacji w ludzkich społecznościach – takiej wizji wykluczyć się nie da.
Żeby zapobiec czarnym scenariuszom, pilna wydaje się nie tylko reforma edukacji uwzględniająca postęp technologiczny, szczególnie w sferze technologii informacyjnych, oraz dbająca o właściwe wyważenie proporcji między czasem spędzanym przez młodzież w świecie wirtualnym i w świecie fizycznym. Konieczny jest też powrót w edukacji do prymatu pojęcia prawdy. W szczególności konieczne są praktyczne zajęcia dotyczące odróżniania prawdy od fałszu, informacji wiarygodnej od budzącej wątpliwości, wyszukiwania w zasobach internetu informacji prawdziwych. To ostatnie staje się wręcz umiejętnością pierwszej potrzeby, gdy według luźnych oszacowań w internecie jest znacznie więcej informacji przedstawiającej fałszywy obraz rzeczywistości niż wiedzy zgodnej z faktycznym stanem rzeczy. Internet, który miał się stać niezwykłym narzędziem poszerzania wiedzy, stał się narzędziem szerzenia kłamstw i zabobonów z niewyobrażalną wcześniej prędkością. To niezwykle groźne zjawisko nie spotkało się jeszcze z adekwatną reakcją głównie dlatego, że szerząca się dziś w świecie zachodnim „ideologia postępu” nie wydaje się być zbytnio zainteresowana klasycznym pojęciem prawdy. W miejsce to proponuje koncepcje „względności prawdy”, „mojej prawdy”, „twojej prawdy” itp., prowadzące nawet do podważania dobrze ugruntowanych ustaleń nauki i zdrowego rozsądku.
Według klasycznej definicji prawda to właściwość zdań i opisów polegająca na ich zgodności z rzeczywistością, z faktycznym stanem rzeczy. Pretekstem do podważania tej definicji jest to, że jest ona ogólnikowa i niejasna, że przy bardziej skomplikowanych zdaniach i opisach (ciągach zdań), przy niejasnych stanach rzeczy, nie daje ona żadnego kryterium rozstrzygania. To prawda. Wiele rzeczy w naszym postrzeganiu świata pozostaje niejasnych, wiele nie rozumiemy. Ustalenie, jak naprawdę się rzeczy mają w takich przypadkach, pozostaje ciągle wyzwaniem, zadaniem do wykonania. Natomiast nie ulega wątpliwości, że istnieje obszar ścisłej nauki, pozytywnie rozumianego zdrowego rozsądku (jako podstawy nauki) oraz codziennego doświadczenia, gdzie kwestia prawdy jest jasna (dla naukowców i zdrowo myślących ludzi) i nie wymaga żadnych odwołań do definicji. W tym obszarze jasne jest, co jest prawdziwe, a co jest fałszywe, a co może ewentualnie ulec zmianie pod wpływem nowych odkryć. Jasne jest, czego się trzymać. Bez polegania na prawdzie w tym zakresie runęłaby nasza cywilizacja i pewność życia codziennego.
O tym, jak rozpoznawać tę prawdę, jak ją wyszukiwać w internecie, trzeba zacząć uczyć w szkołach. Mnie osobiście niezbędny wydaje się powrót do edukacji przedmiotu pod nazwą „logika praktyczna” – z naciskiem na „praktyczna” i z uwzględnieniem doświadczeń z nieudanych prób zbudowania sztucznej inteligencji. Chociaż obawiam się, że moje osobiste zabiegi w tym kierunku to niestety głos wołającego na puszczy.
Andrzej Kisielewicz"
Według danych Banku Światowego, Międzynarodowego Funduszu Walutowego i ONZ w nominalnym PKP per capita zajmujemy mierne 50 miejsce w świecie. PKB "mocarstwowej" Polski stanowi circa 15% PKB Niemiec. Ale niechciani imigranci sprowadzili na Niemcy ogrom kłopotów i Niemcy czeka stagnacja.
Nie można zapominać o tym że sporą część "polskiego" PKB różnymi sposobami konsumuje zachodni kapitał.
Fundamentem siły politycznej i militarnej państwa jest własny (!) system gospodarczy. Narracja cepów z nie - rządu jaką to wielką pozycje uzyskała Polska dzięki wojnie na Ukrainie i o tym że Niemcy już się nie liczą, z hukiem rozpadła się na spotkaniu NATO w Wilnie gdzie Polski nikt nie traktował poważnie. Napinanie cudzych muskułów to specjalność ultra głupców. To nic nowego. Sanacja liczyła na to że Francja i Wielka Brytanie zniszczą Niemcy gdy te napadną na Polskę
Bardzo niepokojące są przewidywania że Polska przestanie doganiać Europę Zachodnią ( tracąca pozycje w świecie ! ) a konwergencja zamieni się w dywergencje.
1.Jednorazowa Dywidenda Demograficzna wyczerpuje się a społeczeństwo się starzeje. Elon Musk wymienia kryzys demograficzny jako jedno trzech wielkich zagrożeń dla przyszłości krajów.
2.Majątek narodowy można było sprzedać tylko jeden raz. "Zjeść ciastko i mieć ciastko" to frazeologizm używany, kiedy chcemy powiedzieć, że pewne wybory niosą ze sobą ciężkie, nieodwołalne konsekwencje. Transformacja ustrojowa miała dwa oblicza. Oficjalne pozorne i ukryte rzeczywiste. Mateusz Morawiecki mógł raz mówić prawdę.
3.Koncernów światowych nie mamy i nic nie wskazuje na to aby powstały.
4.Koniec dywidendy pokojowej a wielkie antyrozwojowe wydatki zbrojeniowe i na wojsko na horyzoncie
5.Koniec tańszych surowców z Rosji
6.Nie mamy nauki i technologii. Naukę szukającą prawdy trzeba odróżnić od biurokratów "naukowców" szukających grantów i tytułów.
Najgorsze byłoby uwikłanie się Polski w wojnę. "Białoruska armia szkoli się wspólnie z Grupą Wagnera 4 km przy granicy z Polską" Media angielskie piszą jakim to mocarstwem staje się Polska. Pewnie chcą powtórki z 1939 roku. Jesteśmy mocarstwem z 14 starymi czołgami M1A1 wyremontowanymi ze stojących setkami na pustymi.
Szkodzą nam liczne ogromne wysypiska plastikowych śmieci z Zachodu. Szkodzi nam 450 składowisk brudnych toksycznych substancji chemicznych przywiezionych z Zachodu. Ciekawe czy są tam śmieci radioaktywne ?
Czerwiec 2023 jest już piątym miesiącem z rzędu, w którym roczna dynamika produkcji przemysłowej notuje ujemny wynik. Mamy więc modelową Stagflacje. Polacy detalicznie w czerwcu 2023 kupili w cenach stałych o 4,7 % mniej towarów r/r. Konsumpcja per capita mogła spaść o ca 10% ponieważ konsumują też imigranci z Ukrainy i inni. Wszystkiemu winna inflacja, która wielu z nas zmusza do zaciśnięcia pasa. Ekonomiści z niepokojem obserwują to, co dzieje się ostatnio z konsumpcją, która przez lata była motorem napędowym polskiej gospodarki. Stała się teraz hamulcowym. Widać postępujące zaciskanie pasa.
Jak widać przy stagnującym a nawet rosnącym PKB może mocno spaść konsumpcja. PKB jakiś czas może rosnąć wraz z prymitywizacją gospodarki. Po prostu PKB to jest trochę dziwne zwierze.
Rząd steruje gospodarką. Jednym z wejść sterujących system gospodarczy są podatki.
Wysoki poziom płac mają tylko kraje z własnym nowoczesnym, rentownym eksportem. Surowcowa Australia, Kanada i Norwegia są tu artefaktem. Są wyjątkiem potwierdzającym regułę. Koncerny opracowują też nową technologie i wymuszają jej zastosowanie u swoich kooperantów i dostawców. Koncerny generalnie organizują wokół siebie i modernizują całą gospodarkę kraju. Japonia, Korea, Tajwan, Chiny metodami protekcjonizmu i dotacjami ogromnie pomogły powstać swoim koncernom światowym.
Polska nie ma ani jednego koncernu światowego co wynika z wybranej ścieżki "rozwoju".
Polski nie - rząd sprzedaje zachodnim firmom siłę roboczą i pobiera od tego zapłatę. Oczywiście im firmy te więcej płacą pracownikom (i rządowi ) tym lepiej dla całej Polski.
Ceny towarów lokalnych w krajach są dobrze skorelowane z PKB per capita. Biedne kraje są tanie. Na cenowej mapie świata Polska jest w gronie krajów najtańszych czyli biednawych.
Ekonomia posługuje się nonsensownym pojęciem "wydajności pracy" mierzonym w dolarach, euro... na godzinę pracy pracownika. Kierowca autobusu w Niemczech wykonujący dokładnie tą samą pracę co Polak w Polsce zarabia trzy razy tyle i ma trzykrotnie ( lub więcej bo pracuje mniej godzin ) wyższą "wydajność pracy". W poprawnej definicji wydajność pracy jest pochodną zaawansowania technologii i organizacji pracy !
Podatki podnoszą poziom cen w krajach i gdy małe jest bezrobocie podnoszą z niewielkim opóźnieniem "automatycznie" płace jako że pracownicy są w stanie wymóc rekompensujące wzrost cen towarów i usług podwyżki płac.
Kraje EU zobowiązane są stosować conajmniej minimalną ustaloną w UE stawkę akcyzy ale mogą stosować stawkę większą. Wódka w Polsce kosztuje tyle co w Niemczech a wina w Polsce są już droższe a więc akcyzę możemy podwyższyć tylko w ślad na Niemcami.
Siła nabywcza wynagrodzenia w PRL liczona w papierosach był znacznie wyższa niż obecnie ale w 1983 roku przy przeciętnym wynagrodzeniu 14 405 zł butelka wódki "Extra Żytnia" kosztowała aż 670 złotych. Zatem na tle PRL napoje alkoholowe są obecnie bardzo tanie ale podniesienie akcyzy nie ma żadnego sensu.
Ważniejsza gospodarczo benzyna ( szczególnie paliwo Diesla ) obecnie kosztuje w Polsce około 1.59 Euro za litr a w Niemczech 1,95 Euro ale w Holandii, Danii... jest jeszcze droższa dlatego że tam akcyza jest znacznie wyższa. Czy w Polsce należy podnieść akcyzę na paliwo do poziomu Niemiec ?
-Wzrosną wpływy budżetu od litra dla miejscowych i przejezdnych konsumentów paliwa co pozwoli ogólnie ograniczyć podatki PIT, CIT i VAT i zadłużenie państwa.
-Popyt na paliwa jest bardzo mało elastyczny i znikoma część kierowców odstąpi ( korzystnie dla wszystkich skorzysta z komunikacji miejskiej ) od używania prywatnego samochodu
-Odrobinę może spaść nonsensowne dalekie wożenie po kraju wyrobów (spożywczych) produkowanych też lokalnie
-Mała część przejezdnych - tranzytowych straci motywację do kupienia tańszego paliwa w Polsce. Można nałożyć akcyzę i VAT na wwożone paliwa spoza krajów UE.
-Zwiększone koszty firm odrobinę pogorszą ich konkurencyjność międzynarodową ale mogą obniżyć nadmierny i szkodliwy zysk właścicieli firm jako że siła robocza jest bardzo tania
-Zwiększona cena paliwa stopniowo spowoduje wzrost wszystkich cen (energia i transport są w cenie każdego towaru ) i tylko przy małym bezrobociu pracownicy otrzymają rekomensujące wyższe wynagrodzenie.
Zatem kluczem do optymalizującej podatki decyzji jest nieoczekiwanie poziom bezrobocia ! Oczywiście potrzebne są konkretne dane co do możliwej rezygnacji obcych z kupowania paliwa w Polsce ale na 99% pewności należy akcyzę podnosić do poziomu niemieckiego. Zatem z alkoholem, papierosami i paliwem nic nie warto kombinować i należy stosować poziom sąsiednich Niemiec. Tam gdzie to jest możliwe warto naśladować dobre wzory !
Oczywiście mafie paliwową należy bezwzględnie zwalczać co jednak wymaga poskromienia korupcji służb, prokuratorów a zwłaszcza rozbisurmanionych sędziów.
Bezrobocie jest bardzo szkodliwe dla gospodarki i społeczeństwa na mnóstwo sposobów. Gdyby nie złodziejska prywatyzacja, zbrodniczo głupi "szok bez terapii" a następnie reformy idiotów TKM ( zwłaszcza pasożytnicza złodziejska deforma emerytalna) i "chłodzenie bez sensu" absurdalnymi stopami procentowymi, moglibyśmy mieć obecnie nominalne PKP pc wyższe o 40% od tego co mamy. Głupota tych wymienionych poczynań mieści się w kategorii Mumbo-jumbo czyli kocopoły lub dyrdymały.
Wpierw było: Wszystko sprywatyzować, a potem wszystko magicznie szybko się poprawi. Jakoś to będzie.
Teraz mamy odwrotnie: Wszystko upaństwowić, a potem wszystko magicznie będzie coraz lepiej. Jakoś to będzie.
Obecnie najgorsza wydaje się destabilizująca, szkodząca gospodarce i społeczeństwu inflacja spowodowana wydrukowaniem ponad 400 mld pustych złotych.
W lipcu 2023 w trzech państwach Unii Europejskiej inflacja HICP w czerwcu spadła poniżej 2% czyli ... jest nadzieja na zakończenie wojny na Ukrainie. Pomijając artefakty oraz Argentynę to wysoka inflacja w świecie jest tylko w niepraworządnych i religijnych Turcji i Polsce i w autorytarnych Węgrzech.
Polsce w odsłonie PRL najbardziej szkodziła Zimna Wojna ( liczne sankcje Zachodu od stanu wojennego ) i zagraniczny dług u szyi. Po jej zakończeniu i połowicznym oddłużeniu gospodarka mogła wystartować a nie zostać pogrążona „terapią szokową” i uwstecznieniem struktury.
Wszyscy hegemonowie wyrośli na potęgi na technologii i przemyśle.
Najważniejszym towarem eksportowym USA jest obecnie dolar ale hegemon jest w sytuacji wyjątkowo uprzywilejowanej i nie będzie to trwało wiecznie. Hegemon próbuje obecnie odbudować swój przemysł.
Jako przykład tego że przemysł jest niepotrzebny i niemodny często podawany jest Pas Rdzy czyli Rust Belt. To potoczne określenie terenów w północno-wschodniej części Stanów Zjednoczonych, obejmujący stany Michigan, Indiana, Ohio, Pensylwania z rozwiniętym przemysłem ciężkim, metalowym ale też innymi przemysłami. W okresie rozwoju przemysłu w Stanach Zjednoczonych region ten nazywano stalowym pasem czyli Steel Belt. „Rdza” symbolizuje rozkład czyli zmniejszanie się produkcji, zatrudnienia i liczby ludności. Symbolem tego głębokiego rozkładu jest upadłe Detroit.
Umafijnione związki zawodowe, szczególnie przemysłu motoryzacyjnego, wymusiły na firmach gigantyczne zarobki nie mające żadnego pokrycia w wydajności pracy. Firmy widząc że są na przegranej pozycji zaprzestały modernizacji i doprowadzały do zadłużenia, bankructwa i likwidacji zakładów. Właściciele środki zainwestowali w innych regionach USA i w III Świecie a szczególnie w Chinach, skąd importowali wyroby.
Niemniej udział przemysłu w PKB USA spadł do 8% a w tym spory udział ( rzekomo do 30% ) ma przemysł zbrojeniowy.
Potrzebny jest kompromis i rozsądek w podziale wytworzonego "tortu" między kapitał a pracowników. Wyzysk jest zły ale niszczenie kapitału ( i tolerowanie tego przez rząd ) dało reakcje obronną i to co dało.
Dług państwowy USA wzrósł w ciągu miesiąca maja 2023 roku o bilion dolarów ! Zadłużenie państwowe USA wynosi obecnie 32 biliony dolarów. To 126% PKB USA. Polskie PKB wynosi 688 mld dolarów czyli 0.688 biliona. Zatem USA potrzebna jest wojna: "Ambicje i polityka China zagraża naszym interesom, bezpieczeństwu i wartościom".
USA mające na przełomie XVIII / XIX wieków 5.2 miliona mieszkańców ( z szalona płodnością TFR = 7 ), po 9 dekadach stały się największą światową potęgą gospodarczą. Ekspansja Stanów Zjednoczonych, zawsze odbywała się wtedy pod hasłem “niesienia wolności i demokracji”. Odbyła się kosztem imperiów kolonialnych francuskiego, brytyjskiego i hiszpańskiego. Przed I Wojną USA były dłużnikiem Zachodu a po wojnie jego wielkim wierzycielem. Wielka Brytanie z hegemonicznym funtem jako walutą rezerwową świata stała się dłużnikiem USA. Ogromne fale amerykańskiego kapitału krążyły po globie a Wielki Kryzys został wywołany w USA. Ogromnie USA wzmocniły się czasie II Wojny Światowej. Niekwestionowaną hegemonię Ameryka osiągnęła w wyniku Zimnej Wojny z ogromnym i zasobnym naturalnie Związkiem Radzieckim. Rosja nie potrafiła mądrze eksploatować swoich niezmierzonych bogactw natury i atutów. Zimna Wojna to kolejna wojenna klęska Rosji, która nie powinna pchać się do żadnej wojny. Wojny obnażają wszystkie jej trwałe słabości, korupcje i ogólną niewydolność. Związek Radziecki niby był zwycięzcą w strasznej wojnie ale jego straty były apokaliptyczne i w gruncie rzeczy niemożliwe do szybkiej odbudowy. W końcu ZSRR uznał się za pokonanego przez USA w Zimnej Wojnie. Rosja uzurpowała sobie role syndyka masy upadłościowej po Związku Radzieckim zupełnie lekceważąc Ukrainę. Wszystkie wojny po II Wojnie wziely się z ekspansji interesów hegemona. Obecnie - "Jak na Wielkim Stepie najwięcej zarobić, żeby jak najmniej stracić"
Nazwa "Specjalna Operacja Wojskowa" w Ukrainie i użycie prywatnej armii "Wagnera" ma magicznie zmienić logikę dziejów, gdzie wojny szkodzą Rosji. USA uprawiają korupcje polityczną w dużej skali. W przypadku prezydentów Kwaśniewskiego i wcześniej Wałęsy, organizowano im serie “odczytów” płacąc za 2 godziny plecenia bzdur średnio 30 tysięcy dolarów .Takie odczyty odbywały się trzy razy w tygodniu na długiej trasie i było organizowane w roku nawet 2-3 razy. To oznacza dochód ponad miliona dolarów. Na takie wykłady zapraszano Gorbaczowa, co jasno świadczy o jego roli w zniszczeniu pozycji ZSRR.
Polskie Badanie i Rozwój ( D&R ) pochłaniające dziesiątki miliardów złotych podatnika sa ... bezobjawowe. To biurokratyczna wiara w cuda. Defraudacja i droga do nikąd.
Niedawno ( z powodu kontroli NIK ) weszło w życie zarządzenie ministra zdrowia Adama Niedzielskiego uchylające zarządzenie z 2006 roku, na mocy którego powstał Zespół do praw przeciwdziałania oszustwom i korupcji w ochronie zdrowia.
NFZ przekazał Agencji Badań Medycznych miliard złotych, a pożytek z jej działalności dla pacjentów był niewielki - podsumowuje kontrole NIK. Jej działalność nie przyniosła żadnych wymiernych korzyści ani systemowi ochrony zdrowia, ani budżetowi państwa - wynika z raportu NIK. W okresie objętym kontrolą, ABM nie inicjowała i nie prowadziła własnych badań naukowych oraz prac rozwojowych, mimo zapewnionych na ten cel środków. Mimo wydania wielkich pieniądze na polską szczepionkę - efektów nie ma.
Czy w Polsce może powstać koncern światowy ? Zbyt rozwielmożniona jest w parapaństwie korupcja. Legalna korupcja jest metodą zapewniania wielkich korzyści materialnych - 19.07.2023: "Milionerzy PiS-u w państwowych spółkach. Tłuste koty dobrej zmiany - zarobki partyjnych nominatów w państwowych spółkach". Zwołaną przez posłów PO konferencje dot. zarobków prezesa Orlenu Daniela Obajtka i wiceministra rolnictwa Janusza Kowalskiego przerwali awanturą politycy PiS !
Ale ludzie z PO "legalnie" kradli jeszcze więcej !
O tym że własny nowoczesny eksport jest kluczem do rozwoju kraju wiadomo od ... zawsze. Doskonale wiedziano o tym że rodzaj towarów importu i eksportu kształtuje całą gospodarkę.
XIX wieczne Stany Zjednoczone stosowały ostry protekcjonizm aby doprowadzić do powstania własnych potężnych koncernów. Ich przykład był z doskonałym skutkiem selektywnie naśladowany w Niemczech i w Japonii. Ale protekcjonizm stosowano też w XX wieku w USA.
Wprowadzony przez Brytyjczyków znak towarowy "Made in Germany" miał pierwotnie stygmatyzować niemieckie produkty przemysłowe. Został wprowadzony w myśl ustawy o znakach handlowych, która weszła w życie 23 sierpnia 1887 roku. Wprowadzając znak towarowy o negatywnej w założeniu konotacji, chciano skuteczniej walczyć z niemieckim przemysłem budowy maszyn, który już znacznie przewyższał poziomem ich rodzimy. Stało się dokładnie odwrotnie. Wcale nie chodziło Brytyjczykom o naśladownictwo i kradzież ich patentów. Problem tkwił gdzie indziej. Po prostu konkurent był dużo lepszy. Gdy rozpoczęła się w Wielkiej Brytanii dezindustralizacja nie modernizowany przemysł szybko stał się przestarzały przy rozwijającej się niemieckiej konkurencji.
Bardzo długo znak "Made in Germany" był symbolem wysokiej i najwyższej jakości. N.B. W PRL żartowano że Polak chce produkować Syrenkę ale mieć Mercedesa.
Szalę zmagań I Wojny Światowej przechyliło dopiero przystąpienie do niej potężnych USA. Francja z Wielką Brytanią ( wcześniej Rosja przegrała z Niemcami ) razem były słabsze od "momentalnie" uprzemysłowionych i wzbogaconych Niemiec ! Psychologiczne załamanie Niemców wyniknęło z tego że wiedzieli oni ( prawie co 3 Amerykanin miał niemieckie korzenie ) jakim dynamicznym kolosem przemysłowym są USA i że wojowanie z nimi nie ma żadnego sensu a doprowadzi tylko do katastrofalnych zniszczeń Niemiec.
Pod mądrym przywództwem USA wyrosły na hegemona !
Na terenach zaborów kapitalistami byli Żydzi, Niemcy, Rosjanie... czyli element obcy etnicznie i "republikańsko". Zbiedniała po likwidacji pańszczyzny pasożytnicza szlachta polowała na posady u nich. Wysługiwała się też zaborcom. Zatem w III RP wróciliśmy do tamtych czasów. W pasożytniczej II RP nie powstała ani jedna duża firma prywatna a szlachta odrodziła się na państwowych sanacyjnych posadach.
II RP negatywna selekcja kadr święciła triumfy za sanacji prowadzać do najgorszej katastrofy w całej historii Polski i Polaków.
Jedną z niewielu zalet komunizmu było zniszczenie mechanizmów rozwoju niedorozwoju.
Mądre rządy Finlandii i Szwecji stworzyły rynek dla telefoni komórkowej ( ten rynek wcześniej tam nie istniał ) Nokii i Ericksona ! Model biznesowy Nokii, który zrobił z niej światowego giganta, bazował na liderowaniu w technologii. Na D&R przeznaczano ponad 20 % przychodów. Zmiana modelu biznesowego spowodowała wywrócenie się potężnej firmy.
Protekcjonizm był krytykowany za to że towary produkowane przez rozwijające się, wspierane firmy krajowe są droższe i gorsze. To prawda ale pracownicy - nabywcy dzięki produkcji mieli je za co kupować podczas gdy przy imporcie bez produkcji nie mieliby za co kupić lepszych towarów. Zresztą monopol importerów zawsze prowadził do bardzo wysokich cen i to oni sponsorowali dywersyjne artykuły w mediach. Aby minimalizować wady protekcjonizmu wspierane przez rząd firmy miały/musiały w końcu eksportować. Gdy firmy USA wyrosły na gigantów, USA stały się orędownikiem "wolnego handlu" !
Unia Europejska niby zabrania protekcjonizmu czyli pomocy publicznej ale z drugiej strony propaguje go w rozmaitych programach i wyjątkach. W rzeczywistości pojęcie "wyjątek" jest tak zdefiniowane że wyjątkiem może być wszystko. Potrzebni są tylko inteligentni urzędnicy.
Nie - rząd z opłat od emisji CO2 zebrał już ( z waloryzacją ) ponad 100 mld złotych. Środki te w znikomym stopniu zasiliły energetykę.
Sama modernizacja polskiego systemu przesyłowego i dystrybucyjnego ma kosztować ponad 500 mld złotych. Jest popierana czy nawet żądana przez EU. W nieskorumpowanym państwie byłaby to znakomita okazja do modernizacji przemysłu i zakończenia na przykład z ośmieszającym eksportem miedzi.
Dygresja. Autor w PRL rozmawiał z poważnymi osobami na temat tego dlaczego nierentownie jest eksportowana surowa miedź. "Zachód niczego nowoczesnego od nas nie kupi a kupuje tylko węgiel i miedź bo to dotujemy i to nas pogrąża. Strasznie potrzebujemny każdego dolara z eksportu za każdą cenę" To była nieprawda. Wynikało to z lenistwa, nieróbstwa i głupoty nomenklatury oraz działania pasożytniczych Central Handlu Zagranicznego okradanych przez ludzi bezpieki i partii. Czyli negatywna selekcja kadr przyczyniła się do upadku PRL.
Energia elektryczna z wiatru i Słońca jest droga i co gorsza niestabilna ale biorąc pod uwaga szalone całkowite koszty wydobycia w Polsce węgla kamiennego oraz dewastacje środowiska i zdrowia ludzi ... wcale nie jest aż taka droga.
Gdyby Polskie firmy produkowały wiatraki oraz stawiały je na morzu to mogłoby to być pozytywne dla gospodarki. Jeśli wszystko to importujemy to jest bardzo szkodliwe dla naszej gospodarki.
Wiatraki na morzu mają stabilniejszą generacje niż wiatraki lądowe co jest ich wielką zaletą ale ich postawienie na dnie morza jest bardzo drogie. Potrzebne są specjalistyczne, drogie statki, których dzierżawa kosztuje do kilkuset ( ekstremalnie do 500 ) tysięcy dolarów dziennie. Stocznie odziedziczone po PRL były nierentowne dlatego że produkowano tylko proste, tanie statki a nie poszukiwane drogie jednostki specjalistyczne. Importowano także do nich drogie wyposażenie ( a w tym automatykę i elektronikę ) zamiast produkować je w Polsce.
Drogie i poszukiwane są także metanowce do przewozu LNG.
W scenariuszu upadku polskich stoczni mieliśmy jednocześnie lenistwo, nieróbstwo i głupotę pasożytniczej nomenklatury PRL oraz III RP ( jak z miedzią) i zabójcze związki zawodowe jak w "Rust Belt"
Według Międzynarodowej Agencji Energetycznej (MAE), w procesie produkcji EV zużywa się 2.4 razy więcej miedzi (53 kg wobec 22 kg) niż w przypadku auta konwencjonalnego, 2.2 razy więcej manganu (24 kg wobec 11 kg), a dodatkowo lit (9 kg), nikiel (40 kg), kobalt (13 kg) i grafit (67 kg).
Ponieważ jesteśmy liczącym się producentem miedzi wniosek jest prosty - "powinniśmy" produkować silniki elektryczne do EV a nie sprzedawać surową miedź. Oczywiście w obecnym modelu prymitywnej gospodarki zależnej dalej będziemy tanio eksportować surową miedź.
Zabójcza monokultura węglowa i przestarzały przemysł ciężki PRL to efekt ówczesnego wpływu wschodniego hegemona ZSRR. Ale jednak ZSRR zgodził się na nasze elektrownie jądrowe. Leonid Breżniew gdy usłyszał jakie nakłady są konieczne na mikroelektronikę i tworzenie programów odparł ile to kopalni i hut można za te miliardy wybudować.
Zasadne jest pytanie po co nam te biurokratyczne wyższe szkoły i miliardy podatnika na pozoracje D&R skoro kompletny obiekt pod klucz za wiele miliardów stawia Orlenowi koreański Hyundai i nawet siła robocza do budowy jest przywieziona z Azji !
Szanse na powstanie polskiego koncernu światowego są małe ale koncern początkowo dostarczający produkty do modernizacji polskiego systemu przesyłowo - dystrybucyjnego za 300 mld złotych były dobrym fundamentem pod światowy koncern. Jest więc okazja do wykorzystania.
Oczywiście możliwe jest też produkcja na potrzeby Zielonej Energetyki.
Radiokomunikacja ma już ponad 100 lat. Stosowanie kierunkowych anten nadawczych i odbiorczych pozwala powiększyć zasięg łącza oraz zmniejszyć zakłócające odbicia sygnału i wzajemne zakłócanie się systemów. Na zakresach mikrofalowych typowe są kierunkowe anteny paraboliczne. Szczególną role kierunkowość odgrywa w antenach radarów. Mechaniczne skanowanie anteny radaru ma jednak wady. Jest powolne i mało stabilne. Antena ma tylko na stałe określoną funkcje kierunkowości. Idea anten fazowych (phase array) ma już swoje lata. Idea jest prosta. Pożądaną kierunkowość uzyskujemy wybierając w torach elementarnych antenek składowych odpowiednie przesunięcie fazy i wzmocnienie / tłumienie. Oczywiście im więcej jest elementarnych antenek tym większa możliwa do uzyskania kierunkowość. W ogólności jednak charakterystyka "kierunkowości" do syntezy jest zupełnie dowolna. Charakterystykę anteny można zmieniać bardzo szybko co jest szczególnie ważne w systemach militarnych przy śledzeniu wielu celów.
Dawniej w konstrukcji anteny fazowej stosowano falowody, sprzęgacze kierunkowe i przełączniki ( czyli dość małe binarne pole manewru ze wzmocnieniem i fazą toru antenki ) na sterowanych diodach PIN. Konstrukcja mechaniczna anteny fazowej była precyzyjna i droga.
Obecnie monolityczne układy mikrofalowe LSI umożliwiają konstrukcje anten fazowych o doskonałych parametrach a przy tym względnie prostych w produkcji. Na rysunku pokazano przykładową charakterystykę anteny fazowej złożonej 4 x 4 elementów - antenek
Z jednej strony wielowarstwowej płyty drukowanej PCB są antenki a po drugiej stronie PCB mikrofalowe układy scalone i połączenia. Duża antena może mieć bardzo dużo takich modułów składowych.
Obecnie w technologii GaN można wytworzyć dla anteny fazowej scalone wzmacniacze mocy 100 W w paśmie X !
Programowalny układ ADAR1000 ( całość za analog.com ) do anten fazowych na zakres 8-16 GHz wytworzony jest w materiale SiGe, SOI (Silicon On Insulator) technologią BiCMOS LSI.
"Features and Benefits
Product Details
8 GHz to 16 GHz frequency range
Half-duplex for transmit and receive modes
Single-pin transmit and receive control
360° phase adjustment range
2.8° phase resolution
≥31 dB gain adjustment range
≤0.5 dB gain resolution
Bias and control for external transmit and receive modules
Memory for 121 prestored beam positions
Four −20 dBm to +10 dBm power detectors
Integrated temperature sensor
Integrated 8-bit ADC for power detectors and temperature sensor
Programmable bias modes
4-wire SPI interface"
Układ ADAR1000 jest nowością. Nie można go normalnie kupić. Mały radar z takimi układami ma szokująco dobre parametry.
OdpowiedzUsuńNowe polskie radary wojskowe phase array to technologia sprzed 30 - 35 lat.
... czyli to, co ukradł Zacharski
UsuńA Sztarski, ech...
Witam. Mieliśmy pokaz działania naszych radarów. Ruska rakieta, ukraińskie, balony, białoruskie helikoptery... Dno a pod nim muł.
UsuńJednak radio to troszkę dalej niz automatyka i niech tak pozostanie;-)
OdpowiedzUsuń